CARDIAC MUSCLE Its Ultrastructure in the Finch and Hummingbird with Special Reference to the Sarcoplasmic Reticulum

نویسندگان

  • PAUL H. JEWETT
  • J. R. SOMMER
  • E. A. JOHNSON
چکیده

Cardiac muscle fibers of the hummingbird and finch have no transverse tubules and are smaller in diameter than those of mammalian hearts . The fibers are connected by intercalated discs which are composed of desmosomes and f. adherentes ; small nexuses are often interspersed . As in cardiac muscle of several other animals, the junctional SR of the couplings is highly structured in these two birds but, in addition, and after having lost sarcolemmal contact, the junctional SR continues beyond the coupling to extend deep into the interior of the cells and to form belts around the Z-I regions of the sarcomeres . This portion of the sarcoplasmic reticulum, which we have named "extended junctional SR," and which is so prominent and invariant a feature of cardiac cells of hummingbirds and finches, has not been observed in chicken cardiac cells . The morphological differences between these species of birds may be related to respective differences in heart rates characteristic for these birds .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extended junctional sarcoplasmic reticulum of avian cardiac muscle contains functional ryanodine receptors.

The ryanodine receptor (RYR)/Ca2+ release channel of avian cardiac muscle was localized by immunocytochemical techniques and biochemically characterized using isolated membrane and receptor protein fractions. Monoclonal antibody C3-33 raised against the canine cardiac RYR bound to the junctional sarcoplasmic reticulum of pigeon and finch hearts, both at peripheral couplings and at extended junc...

متن کامل

Digestion of cardiac and skeletal muscle junctional sarcoplasmic reticulum vesicles with calpain II. Effects on the Ca2+ release channel.

The Ca2+ release channel and ryanodine receptor are activities copurifying with the 400,000-450,000 Da high molecular weight protein of cardiac and skeletal junctional sarcoplasmic reticulum. Calpain II, an endogenous cytosolic protease, was used to selectively degrade the high molecular weight protein in cardiac and skeletal muscle sarcoplasmic reticulum vesicles, and its effects on the activi...

متن کامل

THE ULTRASTRUCTURE OF THE CAT MYOCARDIUM I. Ventricular Papillary Muscle

The ultrastructure of cat papillary muscle was studied with respect to the organization of the contractile material, the structure of the organelles, and the cell junctions . The morphological changes during prolonged work in vitro and some effects of fixation were assessed. The myofilaments are associated in a single coherent bundle extending throughout the fiber cross-section. The absence of ...

متن کامل

Smooth muscle expresses a cardiac/slow muscle isoform of the Ca2+-transport ATPase in its endoplasmic reticulum.

Smooth muscle expresses in its endoplasmic reticulum an isoform of the Ca2+-transport ATPase that is very similar to or identical with that of the cardiac-muscle/slow-twitch skeletal-muscle form. However, this enzyme differs from that found in fast-twitch skeletal muscle. This conclusion is based on two independent sets of observations, namely immunological observations and phosphorylation expe...

متن کامل

Developmental changes in the ultrastructure and sarcomere shortening of the isolated rabbit ventricular myocyte.

Sarcomere shortening and ultrastructure of intact isolated myocytes from ventricles of three-week-old and adult rabbits were examined. Cells were fixed and embedded, and after measuring their sarcomere shortening in response to electrical stimulation, they were examined in serial thin sections by electron microscopy. This structure-function analysis showed that adult cells were significantly la...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003